MATH 2060 TOTO 9

1. Determine the condition on the positive integers $m, n \geq 1$, if and only if

$$
f(x)= \begin{cases}x^{m} \cos \frac{1}{x^{n}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

is continuously differentiable.

First find condition for f diff.
Consider $\quad \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{m} \cos \frac{1}{x^{n}}-0}{x}=\lim _{x \rightarrow 0} x^{m-1} \cos \frac{1}{x^{n}}$
For $m \geqslant 2, \quad\left|x^{m-1} \cos \frac{1}{x^{n}}\right| \leqslant|x|^{m-1} \quad$ and $\lim _{x \rightarrow 0}|x|^{m-1}$
$\Rightarrow f^{\prime}(0)=0$ exists by squeeze the
For $m=1$. $\lim _{x \rightarrow 0} \cos \frac{1}{x^{n}}$ does not exist
$\Rightarrow f^{\prime}(0)$ does not exit.
So f is diff. $\Leftrightarrow m \geqslant 2$.

Next find condition for f^{\prime} cts.
Note $f^{\prime}(x)=\left\{\begin{array}{cc}m x^{m-1} \cos \frac{1}{x^{n}}+n x^{m-n-1} \sin \frac{1}{x^{n}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
Clearly f^{\prime} is cts for $x \neq 0$.
And $\lim _{x \rightarrow 0} m x^{m-1} \cos \frac{1}{x^{n}}=0$ as $m-1 \geqslant 1 \Leftrightarrow m \geqslant 2$
So $\quad f^{\prime}$ is cts at $x=0 \Leftrightarrow \lim _{x \rightarrow 0} x^{m-n-1} \sin \frac{1}{x^{n}}=0$

$$
\begin{aligned}
& \Leftrightarrow \quad m-n-1 \geqslant 1 \\
& \Leftrightarrow \quad m \geqslant n+2
\end{aligned}
$$

(rime $\left|\sin \frac{1}{x^{n}}\right| \leqslant 1$ and $\lim _{x \rightarrow 0} \sin \frac{1}{x^{n}}$ DNE)
Since $n \geqslant 1, m \geqslant n+2 \Rightarrow m \geqslant 3>2$ (So f^{\prime} exists)
Heme f is $C^{\prime} \Longleftrightarrow m \geqslant n+2$
2. Suppose that f is continuous on $[a, b]$ and $f^{\prime \prime}$ exists on (a, b). Suppose that the graph of f and the line segment joining the end points $(a, f(a))$ and $(b, f(b))$ intersect at a point $\left(x_{0}, f\left(x_{0}\right)\right)$ with $x_{0} \in(a, b)$. Show that there exists a point $c \in(a, b)$ such that $f^{\prime \prime}(c)=0$.
(Done in TUT03).
Apply MVT to f on $\left[a, x_{0}\right], \exists c_{1} \in\left(a, x_{0}\right)$ s.t.

$$
f\left(x_{0}\right)-f(a)=f^{\prime}\left(c_{1}\right)\left(x_{0}-a\right)
$$

Apply MVT to f on $\left[x_{0}, b\right], \exists c_{2} \in\left(x_{0}, b\right)$ s.t.

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
f(b)-f\left(x_{0}\right)=f^{\prime}\left(c_{2}\right)\left(b-x_{0}\right) \\
f^{\prime}\left(c_{1}\right)=\frac{f\left(x_{0}\right)-f(a)}{x_{0}-a}=\text { slope of the live segment } \\
f^{\prime}\left(c_{2}\right)=\frac{f(b)-f\left(x_{0}\right)}{b-x_{0}}=\text { slope of the lie segment } \\
\Rightarrow \quad f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right)
\end{array}\right.
\end{aligned}
$$

Note $a<c_{1}<x_{0}<c_{2}<b$, and
$f^{\prime \prime}$ exists on $(a, b) \Rightarrow f^{\prime}$ cts and diff. on $\left[c_{1}, c_{2}\right]$.
Apply MVT to f^{\prime} on $\left[c_{1}, c_{2}\right], \exists C \in\left(c_{1}, c_{2}\right)$ sit.

$$
f^{\prime \prime}(c)=\frac{f^{\prime}\left(c_{2}\right)-f^{\prime}\left(c_{1}\right)}{c_{2}-c_{1}}=0
$$

3. Let $R_{n}(x)$ be the remainder of the n-th Taylor polynomial of $(1+x)^{\frac{1}{n}}$ at $x=0$, where $n \geq 2$ is an integer. Show that for any $x>0$,

$$
\begin{aligned}
n \text { even } & \Longrightarrow R_{n}(x) \leq \frac{(n-1)(2 n-1)(3 n-1) \cdots\left(n^{2}-1\right)}{(n+1)!n^{n+1}} x^{n+1} \\
n \text { odd } & \Longrightarrow R_{n}(x) \geq-\frac{(n-1)(2 n-1)(3 n-1) \cdots\left(n^{2}-1\right)}{(n+1)!n^{n+1}} x^{n+1}
\end{aligned}
$$

Let $f(x)=(1+x)^{\frac{1}{n}}$
Recall: $R_{n}(x)=\frac{f^{(n+1)(c)}}{(n+1)!}(x-0)^{n+1} \quad \exists c \in(0, x)$

1) Compute $f^{(n+1)}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{n}(1+x)^{\frac{1}{n}-1} \\
& f^{\prime \prime}(x)=\frac{1}{n}\left(\frac{1}{n}-1\right)(1+x)^{\frac{1}{n}-2} \\
& \vdots \\
& f^{(n+1)}(x)=\frac{1}{n}\left(\frac{1}{n}-1\right) \cdots\left(\frac{1}{n}-n\right)(1+x)^{\frac{1}{n}-n-1}
\end{aligned}
$$

2) $R_{n}(x)$

By Taylor's The, $\forall x>0, \exists c \in(0, x)$ s.t.

$$
\begin{aligned}
R_{n}(x) & =\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad n+1 \text { terms } \\
& =\frac{1}{(n+1)!} \frac{1}{n}\left(\frac{1}{n}-1\right) \cdots\left(\frac{1}{n}-n\right)(1+c)^{\frac{1}{n}-n-1} x^{n+1} \\
& =\frac{1}{(n+1)!} \cdot \frac{1}{n^{n+1}}(\underbrace{1-n)(1-2 n) \cdots\left(1-n^{2}\right)}_{n \text { terms }} \frac{1 x^{n+1}}{(1+c)^{n+1-\frac{1}{n}}} x^{n+1} \\
& =\frac{1(-1)^{n}(n-1)(2 n-1) \cdots\left(n^{2}-1\right)}{(n+1)!n^{n+1}} \frac{1}{(1+c)^{n+1-\frac{1}{n}}} x^{n+1}
\end{aligned}
$$

If n is even, then

$$
R_{n}(x)=\frac{(n-1)(2 n-1) \cdots\left(n^{2}-1\right)}{(n+1)!n^{n+1}} \frac{1}{(1+c)^{n+1-\frac{1}{n}}} x^{n+1}
$$

Sine $0<c<x, 0<\frac{1}{1+c}<1, n+1-\frac{1}{n}>0$ and all other factors are +re, we have

$$
R_{n}(x) \leqslant \frac{(n-1)(2 n-1) \cdots\left(n^{2}-1\right)}{(n+1)!n^{n+1}} x^{n+1}
$$

If n is odd, then

$$
\begin{aligned}
R_{n}(x) & =-\frac{(n-1)(2 n-1) \cdots\left(n^{2}-1\right)}{(n+1)!n^{n+1}} \frac{1}{(1+c)^{n+1-\frac{1}{n}}} x^{n+1} \\
& \geqslant-\frac{(n-1)(2 n-1) \cdots\left(n^{2}-1\right)}{(n+1)!n^{n+1}} x^{n+1}
\end{aligned}
$$

4. Using definition, show that

$$
G(x):= \begin{cases}\frac{1}{n}, & \text { if } x=1-\frac{1}{n} \quad(n=1,2, \ldots) \\ 0, & \text { elsewhere on }[0,1] .\end{cases}
$$

is (Riemann) integrable on $[0,1]$ and $\int_{0}^{1} G=0$.
Let $\varepsilon>0$. Set $E_{\varepsilon}:=\{x \in[0,1]: G(x) \geqslant \varepsilon\}$ $=\left\{0, \frac{1}{2}, \frac{2}{3}, \ldots, 1-\frac{1}{N_{\varepsilon}}\right\}$ is a finite set
where $N_{\varepsilon}=[1 / \varepsilon]$ the longest integer $\leqslant 1 / \varepsilon$

$$
\left(\begin{array}{ll}
& N_{\varepsilon} \leqslant 1 / \varepsilon \quad ; \quad \\
\Rightarrow \quad \frac{1}{W_{\varepsilon}} \geqslant \varepsilon \quad & \frac{1}{N_{\varepsilon}+1}<\varepsilon
\end{array}\right)
$$

Take $\delta:=\frac{\varepsilon}{2 N_{c}+1}>0$
If $\dot{P}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ is a tagged partition of $[0,1]$ with $\|\dot{p}\|<\delta$,
then

$$
\begin{align*}
& S(G ; \dot{P})=\sum_{i=1}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
&=\sum_{\substack{i=1 \\
t_{i} \neq E_{c}}} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)+\sum_{i=1}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \tag{I}\\
& t_{i} \in k_{c}
\end{align*}
$$

(I): $\quad t_{i} \notin E_{\varepsilon} \Rightarrow 0 \leqslant G\left(t_{i}\right)<\varepsilon$

So $0 \leqslant \sum_{\substack{i=1 \\ t_{i} \notin E_{c}}}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)<\varepsilon \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=\varepsilon$
(II)! $\quad 0 \leqslant G(x) \leq 1$ and each toy belongs to at most 2 subinterals So $0 \leqslant \sum_{\substack{i=1 \\ t_{i} \in E_{c}}}^{n} G_{l}\left(t_{1}\right)\left(x_{1}-x_{1-1}\right) \leqslant \sum_{\substack{i=1 \\ t_{i} \in E_{\varepsilon}}}^{n}(1)(\delta) \leqslant \delta\left(2 N_{\varepsilon}\right)<\varepsilon$
Heme $0 \leqslant \int(G: \dot{p})<\varepsilon+\varepsilon=2 \varepsilon$ for am \dot{p} with $\|p\|<\delta$ Sine $\varepsilon>0$ is aubittry, $G \in R[0,1]$ and $\int_{0}^{1} G=0$
5. Using squeeze theorem, discuss the integrability of

$$
f(x)= \begin{cases}\cos \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

on the interval $[0,1]$.
(Did a similar question in TuTU b)
Let $\varepsilon \in(0,1)$. Define

$$
\begin{aligned}
& \alpha_{\varepsilon}(x)== \begin{cases}-1, & x \in[0, \varepsilon / 4) \\
f(x), & x \in[\varepsilon / 4,1]\end{cases} \\
& \omega_{\varepsilon}(x)= \begin{cases}1, & x \in[0, \varepsilon / 4) \\
f(x), & x \in[\varepsilon / 4,1]\end{cases}
\end{aligned}
$$

Then $\quad \alpha_{c}(x) \leqslant f(x) \leqslant w_{\varepsilon}(x) \quad \forall x \in[0,1] \quad$ (since $|f| \leqslant 1$)
Heed to check: $\alpha_{\varepsilon}, \omega_{\varepsilon} \in R[a, b]$ and $\int\left(\omega_{c}-\alpha_{c}\right)<\varepsilon$

Note α_{ε} is constant on $[0, \varepsilon / 4]$ except at $x=\varepsilon / 4$
$\Rightarrow \alpha_{c}$ integrable on $[0, \varepsilon / 4]$ by The 7.1.3
Also, $f=\cos \left(\frac{1}{x}\right)$ cts on $[\varepsilon / 4,1] \Rightarrow f$ integrable on $[\varepsilon / 4,1]$
So α_{ε} integrable on $[\varepsilon / q, 1]$
By Additivity Chm $7.2 .9, \quad \alpha_{\varepsilon} \in R[0,1]$.
Similarly, $\quad w_{\varepsilon} \in \mathbb{R}[0,1]$.
Moreover, $\quad \int_{0}^{1}\left(\omega_{\varepsilon}-\alpha_{\varepsilon}\right)=\int_{0}^{\varepsilon / 4}\left(\omega_{\varepsilon}-\alpha_{\varepsilon}\right)+\int_{\varepsilon / 4}^{1}\left(\omega_{\varepsilon}-\alpha_{\varepsilon}\right)$

$$
\begin{aligned}
& =\int_{0}^{4 / 4} 2+\int_{c / 4}^{1} 0 \\
& =\varepsilon / 2<\varepsilon
\end{aligned}
$$

By squeeze the $f \in R[0,1]$

